A PECULIAR ALKYLATION REACTION OF ISOALLOXAZINES

L. Hevesi Department of Chemistry, Facultés Universitaires Notre-Dame de la Paix, 61, rue de Bruxelles B-5000 - Namur (Belgium)

(Received in UK 2 February 1976; accepted for publication 15 March 1976)

Tetramethylammonium hydroxide has been described as an excellent methylating agent for hydantoin derivatives ¹. The same reagent also allows the flash-methylation of barbituric acids ^{2,3}. We could therefore expect the system (CH₃)₄NOH/RX in a DMF or methanol solution to be efficient for alkylation purposes in the isoalloxazine (flavin) series. In the methylation reaction of 7,8,10-trimethylisoalloxazine (lumiflavin) we not only observed 3,7,8,10-tetramethylisoalloxazine,but also the formation of an important quantity of 1,3,7,8-tetramethylalloxazine (dimethyllumichrome). Reasonably, the first product formed is the methylated isoalloxazine 1, which undergoes a subsequent transformation resulting in the thermodynamically more stable alloxazine 2 (Equation 1).

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{N} \\ \text{DMF/R.T.} \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{N} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{CH}_{3}} \begin{array}{c} \text{CH}$$

To test this hypothesis and the generality of reaction (1) we carried out the synthesis of alloxazines starting with various fully alkylated isoalloxazines and using different alkyl halides. A summary of the obtained results and some of the physical properties of the products are presented in table I.

The following mechanism accounts for the observations:

1390 No. 17

Table	1	:	Alkylative	rearrangement	of	isoalloxazines	(Equation	1)
-------	---	---	------------	---------------	----	----------------	-----------	----

		7	PRODUCT (2)			
Starting isoalloxazine (!)	Reaction conditions RX/solvent/time	conver- sion	structure 10	m.p.(lit.)	λ _{max} (nm)	[€] max
R ₃ ,R ₇ ,R ₈ ,R ₁₀ =CH ₃	CH ₃ I/DMF/4 hrs	50	$R_{1}^{1}, R_{3}, R_{7}, R_{8}^{1} = 3$ CH ₃	256 _{4,5} (254-6) ⁴ ,5	343 388	9100 8700
R ₃ ,R ₇ ,R ₈ ,R ₁₀ =CH ₃	_ф СН ₂ Вг/СН ₃ ОН/5hrs	30	$R_1 = CH_2 \phi$ $R_3, R_7, R_8 = CH_3$	214°	340 389	8600 7700
R ₃ ,R ₇ ,R ₈ ,R ₁₀ =CH ₃	CH ₂ =CH-CH ₂ Br/CH ₃ OH/ 22hrs	1	$R_1 = CH_2 - CH = CH_2$ $R_3, R_7, R_8 = CH_3$	209°	343 388	11000 9900
$R_3 = CH_3; R_7, R_8 = H$ $R_{10} = CH_2 \phi$	CH ₃ I/DMF/14hrs	35	R ₁ ,R ₃ =CH ₃ R ₇ ,R ₈ =H	246°	326 382	8500 7100

The mechanism is corroborated by the fact that the N(1) position of isoalloxazines appears to be a hard nucleophilic center both on experimental 6,7 and theoretical 8,9 grounds. The results in Table 1 agree qualitatively with this statement. Indeed going from a hard (methyl iodide) to a soft (benzyl or allyl bromide) alkylating agent we observed a decrease in the percent conversion and an increase in the reaction time.

References and notes

- 1) J. MacGee, Anal. Chem., 42, 421 (1970)
- 2) E. Brochmann-Hanssen and T.O. Oke, J. Pharm. Sci., <u>58</u>, 370 (1969)
- 3) J. MacGee, Clin. Chem., 17, 587 (1971)
- 4) P. Hemmerich, B. Prijs und H. Erlenmeyer, Helv. Chim. Acta, 43, 372 (1960)
- 5) K.H. Dudley und P. Hemmerich, Helv. Chim. Acta, 50, 359 (1967)
- 6) C.R. Jefcoate, S. Ghisla and P. Hemmerich, J. Chem. Soc. (C), 1690 (1971)
- 7) S. Ghisla, P. Hemmerich and C.R. Jefcoate, J.C.S. Perkin I, 1564 (1972)
- 8) Pill-Soon Song, Daeahn Hwahak Hwoejee (Journal of the Korean Chemical Society), 16, 119 (1972)
- 9) Ming Sun and Pill-Soon Song, Biochemistry, 12, 4663 (1973)
- 10) The structure of the products has been assigned on the basis of their characteristic skyblue fluorescence and their UV-VIS (Pye-unicam 1800), NMR (Jeol MH100) and mass (AEI-MS30) spectra.